
F Fermi National Accelerator Laboratory

FERMILAB-Pub-97/102-A

CP-Violating Solitons in the
Minimal Supersymmetric Standard Model

Antonio Riotto and Ola Törnkvist

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

April 1997

Submitted to Physical Review D

Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the United States Department of Energy



Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of

their employees, makes any warranty, expressed or implied, or assumes any legal liability or

responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned

rights. Reference herein to any speci�c commercial product, process, or service by trade

name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United States Government or any agency

thereof. The views and opinions of authors expressed herein do not necessarily state or re
ect

those of the United States Government or any agency thereof.

Distribution

Approved for public release; further dissemination unlimited.



Fermi National Accelerator Laboratory

FERMILAB{Pub{97/102-A

hep-ph/9704371

Submitted to Phys. Rev. D

Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the United States Department of Energy

CP-Violating Solitons in the

Minimal Supersymmetric Standard Model

Antonio Riotto
�
and Ola T�ornkvist

y,

NASA/Fermilab Astrophysics Center,

Fermi National Accelerator Laboratory,

Batavia, Illinois 60510-0500, USA

April 16, 1997

Abstract

We study non-topological and CP-violating static wall solutions in the frame-

work of the Minimal Supersymmetric Standard Model. We show that such

membranes, characterized by a non-trivial winding of the relative U(1) phase

of the two Higgs �elds in the direction orthogonal to the wall, exist for small

values of the mass of the CP-odd Higgs boson when loop corrections to the
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by experimental bounds, we argue why they may have existed in the early

universe with important cosmological consequences.
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I. INTRODUCTION

Supersymmetry provides ways to solve many of the puzzles of the Standard Model

such as the stability of the weak scale under radiative corrections as well as the origin of

the weak scale itself. Local supersymmetry provides a promising way to include gravity

within the framework of uni�ed theories of particle physics, eventually leading the way to

a theory of everything in string theories. Naturalness requires the masses of supersym-

metric particles to be no larger than about 1 TeV, which is within the accessible range

of planned future particle accelerators. For these compelling reasons, supersymmetric

extensions of the Standard Model have been the focus of intense theoretical activity in

recent years [1].

One of the basic properties of the Minimal Supersymmetric Standard Model (MSSM)

is the presence of two Higgs doublets which renders the scalar sector of the low-energy

theory quite rich of consequences. For example, a new source of CP-violation, beyond

the one contained in the CKM matrix, may appear in the Higgs sector [2] when the neu-

tral components of the Higgs �elds acquire complex vacuum expectation values (VEV's)

because of plasma e�ects during the electroweak phase transition. In such a case, particle

mass matrices acquire a nontrivial space-time dependence when bubbles of the broken

phase nucleate and expand during a �rst-order electroweak phase transition [3]. This

provides su�ciently fast nonequilibrium CP-violating e�ects inside the wall of a bubble

of broken phase expanding in the plasma and may give rise to a nonvanishing baryon

asymmetry in the MSSM through the anomalous (B + L)-violating transitions [4] when

particles di�use to the exterior of the advancing bubble [5,6].

An extended Higgs sector usually allows also for the possibility of discrete symmetries

and the presence of associated domain walls [7]. Recently Bachas and Tomaras [8] have

analyzed a di�erent class of membrane defects in the generic two-Higgs-doublet model.
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These electrically neutral solutions di�er from domain walls in that they interpolate

between identical vacua on either side. They are not tied to any discrete symmetry, but

are instead characterized by a non-trivial winding, in the direction orthogonal to the

wall, of the relative U(1) phase � of the two Higgs �elds. Such solutions arise because of

the presence of a term proportional to cos � in the bilinear part of the Higgs potential.

In the �-model limit, where the neutral Higgs components are held �xed at their VEV's,

the membrane indeed coincides with the kink solution of the sine-Gordon model.

The typical thickness of the membranes is M�1
A , the inverse mass of the CP-odd

Higgs scalar A0, and whereas they are not topologically stable, they may have a �nite

lifetime. Although the analysis performed in [8] was restricted to the case tan� = 1,

tan� = v2=v1 being the ratio of the VEV's v2 and v1 of the two neutral Higgs components,

it is important to mention that, as a general property, these CP-violating membranes

seem to exist only when the CP-odd scalar A0 is the lightest neutral eigenstate in the

scalar sector. Therefore, it was concluded in Ref. [8] that the MSSM lies outside the

region of existence of membranes since, at tree level, A0 is generally more massive than the

lightest CP-even scalar h. However, as we shall demonstrate, supersymmetry constraints

on the Higgs sector are so restrictive that CP-violating membranes do not exist at all for

any values of MA and tan� at tree level. This means that no conclusion may be drawn a

priori about the existence of membranes in the framework of MSSM from considerations

about the scalar spectrum unless one relaxes the tree-level conditions in the Higgs scalar

sector by including loop corrections to the Higgs potential.

The purpose of this paper is to study the CP-violating membrane solutions within the

MSSM and to show that these solutions exist (only) when loop corrections to the Higgs

potential are taken into account and that, as was speculated in Ref. [8], they exist only

when the CP-odd scalar A0 is lighter than the lightest CP-even scalar h. This is made

possible because loop corrections coming from the top-stop sector considerably modify
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the hierarchy in the scalar spectrum at tree level [9] and allow the relation MA < Mh.

The paper is organized as follows. Section II contains the description of the model

and the relevant equations. In Section III we analytically investigate the existence of

solutions. Section IV is devoted to the presentation of numerical solutions and results.

Finally, Section V contains our conclusions and a discussion about possible cosmological

implications of the CP-violating membranes.

II. THE MODEL

We denote the two Higgs doublets of the model by

H1 �

0
B@ H1

1

H2
1

1
CA �

0
B@ �1

��1

1
CA ; H2 �

0
B@ H1

2

H2
2

1
CA �

0
B@ �+2

�2

1
CA (1)

with hypercharge y = �1; 1 respectively. The components �1 and �2 are electrically

neutral. The Lagrangian is

L = jD�H1j2 + jD�H2j2 � V (H1; H2) �
1

4
W a

��W
a�� � 1

4
Y��Y

�� ; (2)

where D� � @� + i
2
gW a

� �
a + i

2
g0yY� and the most general gauge-invariant potential

V (H1; H2) is given by

V (H1; H2) = m 2
1 jH1j2 +m 2

2 jH2j2 �m 2
3 [(H1H2) + h:c:]

+ �1jH1j4 + �2jH2j4 + �3jH1j2jH2j2 + �4j(H1H2)j2

+
h
�5(H1H2)

2 + �6jH1j2(H1H2) + �7jH2j2(H1H2) + h:c:
i

(3)

with (H1H2) � �ijH
i
1H

j
2 and jHI j2 � H

y
IHI , I = 1; 2. In eq. (2) we have W a

�� = @�W
a
� �

@�W
a
� � g�abcW b

�W
c
� and Y�� = @�Y� � @�Y�. The physical Z

0 and photon �elds are given

by Z� = W 3
� cos �w � Y� sin �w and A� = W 3

� sin �w + Y� cos �w, where the weak mixing

angle �w satis�es tan �w = g0=g.
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The minimum of the potential (3), for values of the parameters that yield positive

squared masses of the physical Higgs bosons, is given by the vacuum

hH1i =
1p
2

0
B@ v1

0

1
CA ; hH2i �

1p
2

0
B@ 0

v2e
i�

1
CA ; (4)

where v21+v
2
2 = v2 and v = 246:2 GeV is �xed by the mass of theW boson,M2

W = g2v2=4.

The constant phase �, when it is not a multiple of �, provides a spatially uniform source

of CP violation. On the other hand, the couplings �5, �6, and �7 are zero at tree level

and receive small loop corrections that may be neglected in the present context without

a�ecting any of the conclusions. In such a case � = 0, and there is no \background" CP

violation in the model. CP violation will occur only inside the membranes where there

will be an additional, space-dependent relative phase �.

We shall consider static solutions to the �eld equations in which only the neutral �elds

�1, �2 and Z� participate. It can be easily veri�ed that the system of �eld equations for

��1 , �
+
2 , W

1
� , W

2
� and A� is homogeneous, and thus permits solutions where these �elds

are identically zero. The resulting Lagrangian is

L0 =

����(@� + ig

2 cos �w
Z�)�1

����
2

+

����(@� � ig

2 cos �w
Z�)�2

����
2

� V 0(�1; �2) �
1

4
Z��Z

�� ; (5)

where Z�� � @�Z� � @�Z� and

V 0(�1; �2) = m 2
1 j�1j2 +m 2

2 j�2j2 �m 2
3 [�1�2 + c:c:]

+ �1j�1j4 + �2j�2j4 + (�3 + �4)j�1j2j�2j2 : (6)

The couplings �1; �2; �3 and �4 are determined by supersymmetry. By minimizing

the potential (6) the quantities m 2
1 , m

2
2 and m 2

3 may be reexpressed in terms of the

electroweak scale v, the ratio of Higgs expectation values tan� � v2=v1 and the mass

MA of the neutral CP-odd scalar A0. We have
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m 2
1 =

�
M 2

A �
1

2
(�3 + �4)v

2

�
sin2 � � �1v

2 cos2 � ;

m 2
2 =

�
M 2

A �
1

2
(�3 + �4)v

2

�
cos2 � � �2v

2 sin2 � ;

m 2
3 =

1

2
M 2

A sin 2� : (7)

The parameters � and MA therefore completely parametrize the model at tree level.

When one-loop corrections are included, at least one more parameter is needed.

Variation of the action
R
dxL0 with respect to Z�, �

�
1 and ��2 gives

@�Z
�� +

g

2 cos �w
[�i��1(@� + iz�)�1 + i��2(@� � iz�)�2 + c:c:] = 0 ; (8)

(@� + iz�)
2�1 +m 2

1�1 �m 2
3�

�
2 + 2�1j�1j2�1 + (�3 + �4)j�2j2�1 = 0 ; (9)

(@� � iz�)
2�2 +m 2

2�2 �m 2
3�

�
1 + 2�2j�2j2�2 + (�3 + �4)j�1j2�2 = 0 ; (10)

where z� � gZ�=(2 cos �w).

We now turn to the ansatz for the static membrane solution with unit winding number.

We consider the simpli�ed case of an in�nitely large, 
at membrane. The �elds then

depend only on the coordinate x perpendicular to the membrane:

�1(x) =
v1p
2
f1(x)e

i�(x) ; �2(x) =
v2p
2
f2(x) ; Zx =

2 cos �w

g
z(x) ; (11)

where f1(�1) = f2(�1) = 1, �(�1) = 0 and �(1) = 2�. In order to �x the position

of the membrane at x = 0 (for example), it is necessary to consider the symmetries of

the di�erential equations when x ! �x, impose instead boundary conditions f
0

1 (0) =

f
0

2 (0) = 0, �(0) = � and solve the problem on the positive semi-in�nite interval.

In one dimension, the �eld tensor Z�� is identically zero, and so eq. (8) turns into a

constraint that relates the unphysical (pure-gauge) �eld Zx to the gradient of the phase

�:

z = � f 2
1 cos2 �

f 2
1 cos2 � + f 2

2 sin2 �

d�

dx
: (12)
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The gauge choice z = 0, used in Ref. [8], is simple only for tan� = 1.

By inserting the functional forms (11) into eqs. (9) and (10), making use of eq. (12),

and extracting the real and imaginary parts, the system of di�erential equations can be

written

f
00

1 = � 2
As

4
�

�2

f 3
1

+
m 2

1

M 2
Z

f1 + c 2��1f
3
1 + s 2��34f

2
2 f1 � � 2

As
2
�f2 cos � ; (13)

f
00

2 = � 2
Ac

4
�

�2

f 3
2

+
m 2

2

M 2
Z

f2 + s 2��2f
3
2 + c 2��34f

2
1 f2 � � 2

Ac
2
�f1 cos � ; (14)

�
0

= �A

 
s 2�

f 2
1

+
c 2�

f 2
2

!
� ; (15)

�
0

= �Af1f2 sin � : (16)

Here a prime (0) indicates a derivative with respect to the dimensionless coordinate y �

MZx, and � is an auxiliary �eld de�ned by eq. (15). The various constants are de�ned

as follows:

�A =
MA

MZ

; s� = sin�; c� = cos�; �1 =
�1v

2

M 2
Z

; �2 =
�2v

2

M 2
Z

; �34 =
�3 + �4

2M 2
Z

: (17)

The �eld variables f1, f2, � and � have been scaled in such a way that their typical order

of magnitude is unity.

Note here that, in the limit where f1 � f2 � 1, eqs. (15) and (16) reduce to the

equation for the sine-Gordon kink (or circular pendulum), �
00��2A sin � = 0, with analytic

solution � = 4 tan�1[exp(�Ay)] = 4 tan�1[exp(MAx)] corresponding to a membrane of

characteristic thickness M�1
A .

Because eqs. (9) and (10) constitute four real second-order di�erential equations, there

is one second-order equation missing. It corresponds to the CP-odd Goldstone mode, and

is simply

d

dx

"
z(c 2�f

2
1 + s 2�f

2
2 ) + c 2�f

2
1

d�

dx

#
= 0 : (18)

This is merely an integrability condition consistent with eq. (12) .
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In the following, we shall assume that MW � MSUSY
<� O(few) TeV, where MSUSY

is the characteristic supersymmetry particle mass scale. Higher values of MSUSY would

con
ict with naturalness. We neglect mass mixing in the stop sector, and assume that

all supersymmetric particle masses are of order MSUSY. In this approximation, and for

MA
<�MSUSY, accurate analytical low-energy approximations to the one-loop radiative

corrections to the coupling constants �i, i = 1; . . . ; 7, have been derived by Carena et

al. [10] in terms of the parameter t, where

t = ln
M 2

SUSY

M 2
t

(19)

and Mt is the top-quark mass. Here, we shall make also the assumption that the super-

symmetric Higgs mass � as well as the soft trilinear supersymmetry-breaking parameters

At, Ab and Atb are small compared toMSUSY. This justi�es our setting �5 = �6 = �7 = 0.

In addition, we may safely neglect the Yukawa couplings of all 
avors except the top

(stop). This coupling is given by h 2
t = h2= sin2 � where h2 � 2(Mt=v)

2 � 1. From

Ref. [10] we then obtain

�1 =
1

2
; (20)

�2 =
1

2

 
1� 3

8�2
h2

s 2�
t

!
+

3

16�2
h4

s 4�

�
v

MZ

�2"
t+

1

16�2

 
3h2

2s 2�
� 8g 2s

!
t2
#
; (21)

�34 = �
1

2

 
1� 3

16�2
h2

s 2�
t

!
; (22)

�4 = g2�34 ; (23)

where gs is the strong coupling constant. Here the couplings g and gs are meant to be

computed at the scale Mt.

Using eqs. (7), (17), (20-23), all quantities can now be expressed in terms of the

three parameters �A, tan�, and t. For example, the mass matrix of the physical neutral

CP-even Higgs bosons is
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M2 =M 2
Z

0
BB@ � 2

11 � 2
12

� 2
12 � 2

22

1
CCA ; (24)

where � 2
11 = 2�1c

2
� + � 2

As
2
� , �

2
22 = 2�2s

2
� + � 2

Ac
2
� , �

2
12 = (2�34 � � 2

A )s�c� . The mass

eigenstates are

H = cos� cos� (f1 � 1) + sin� sin� (f2 � 1) (25)

h = � sin� cos� (f1 � 1) + cos� sin� (f2 � 1) ; (26)

where the Higgs mixing angle � satis�es ��=2 � � � 0 and is given by

sin 2� =
2�212q

(�211 � �222)
2 + 4�412

; cos 2� =
�211 � �222q

(�211 � �222)
2 + 4�412

: (27)

The mass eigenvalues for H and h are

M 2
H;h =

1

2
M 2

Z

�
� 2
11 + � 2

22 �
q
(� 2

11 � � 2
22)

2 + 4� 4
12

�
: (28)

At tree level the mass of the lighter Higgs boson h is bounded to be smaller than both

MZ j cos 2�j and MA. This conclusion is modi�ed by radiative corrections which raise the

upper limit on the lightest CP-even Higgs mass to values near 150 GeV.

The mass of the charged Higgs particles H� is

M 2
H� =M 2

A �
1

2
�4v

2 =M 2
A +M 2

W

 
1� 3

16�2
h2

s 2�
t

!
: (29)

For high values of MSUSY, this squared mass becomes negative for low values of tan�,

indicating that the potential for such parameter values no longer has a minimum of the

type (4) with v1; v2 6= 0. All other particle squared masses remain non-negative.

Using the above expressions one can now describe the asymptotic behavior of the

di�erent �elds. Let us de�ne �h = Mh=MZ , �H = MH=MZ . The leading terms of the

equations (13){(16) in the asymptotic regime of large y are
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�
00

+ �2A (2� � �) = 0; (30)

h
00 � �2hh = c2�aAe

�2�Ay + aHH
2 (31)

H
00 � �2HH = c2�bAe

�2�Ay + bhh
2 (32)

where � � 2� � c�e
��Ay is the solution of eq. (30) and

aA =
1

2
�2Aws�c�

h
c�c�(1 + 2c 2�)� s�s�(1 + 2s 2� )

i

bA =
1

2
�2Aws�c�

h
s�c�(1 + 2c 2� ) + c�s�(1 + 2s 2�)

i

aH = �s�c� [3(�1 � �34)c
2
� + �34] + c�s�[3(�2 � �34)s

2
� + �34]

bh = +c�c�[3(�1 � �34)s
2
� + �34] + s�s� [3(�2 � �34)c

2
� +�34] (33)

with c� = cos�, s� = sin�, and w = 1.

The characteristic exponential for h and H is determined by the particular solutions

of the inhomogeneous equations as well as the homogeneous solutions. Assuming a

characteristic asymptotic behavior h � e���hy, H � e���Hy, we get ��h = min(�h; 2�A; 2��H)

and ��H = min(�H ; 2�A; 2��h). Since �h � �H we obtain

��h = min(�h; 2�A) ;

��H = min(�H ; 2�A; 2�h) : (34)

It can then be shown that the next-to-leading asymptotic terms in �, H, and h are

suppressed by at least a factor exp(���hy).
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III. ANALYTICAL INVESTIGATION OF THE EXISTENCE OF SOLUTIONS

The equations (15) and (16) have bounded solutions, satisfying �(�1) = 0 and

�(1) = 2�, for any positive functions f1 and f2 with f1(�1) = f2(�1) = 1. We

therefore focus on the question of existence of solutions to eqs. (13) and (14).

The energy density of the membrane solution contains the terms M 2
Zv

2�
02
[c�2� f�21 +

s�2� f�22 ]
�1
=2 and �M 2

Av
2s 2�c

2
�f1f2 cos � whereby the phase �eld � interacts with the mag-

nitudes f1 and f2. Because �(0) = � and �
0

is expected to peak at x = 0, a static solution

corresponding to a minimum of the energy functional must reduce the contribution to

the energy from these two positive terms by forcing f1(0) < 1 and f2(0) < 1. Then,

since f1;2 ! 1 asymptotically as x! �1, we must have positive curvature at the origin,

f
00

1;2(0) > 0, as well as negative curvature f
00

1;2(x) < 0 for large jxj.

The �rst condition is very easy to achieve through the positive de�nite terms �2=f 3
1;2

in eqs. (13) and (14), either by a high value of �
0

(0) or low values of f1;2(0), and can be

shown to impose no appreciable restrictions on the parameters.

In order to examine the possibility of negative curvature, we use eq. (7) to rewrite

eqs. (13) and (14) in the following form:

f
00

1 = � 2
As

4
�

�2

f 3
1

+ c 2��1(f
2
1 � 1)f1 + s 2��34(f

2
2 � 1)f1 + � 2

As
2
� (f1 � f2 cos �) (35)

f
00

2 = � 2
Ac

4
�

�2

f 3
2

+ s 2��2(f
2
2 � 1)f2 + c 2��34(f

2
1 � 1)f2 + � 2

Ac
2
� (f2 � f1 cos �) (36)

We consider these two equations in the region of large jxj, where 1 � �1 < f1 � f2 < 1

and 1� �2 < cos � < 1 for small positive numbers �1 and �2.

We �rst notice that a low value of �A will prevent the positive de�nite �2 term in

both equations from becoming too large. This condition also reduces the in
uence of the

last term.

At tree level (t = 0) we have �1 = �2 = 1=2 and �34 = �1=2. Then the equations
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have no solution for any value of the parameters �A and tan�. In order to show this,

consider �rst the case of tan� = 1. Then from symmetry we have f1 = f2 = f which

should satisfy

f
00

=

"
1

4
� 2
A

�2

f4
+
1

2
� 2
A (1� cos �)

#
f : (37)

The right-hand side of this equation is positive de�nite1 which makes it impossible to

have a solution.

Consider next tan� 6= 1 at tree level. In eq. (35) we have c 2��1(f
2
1 � 1)f1 < 0 and

s 2��34(f
2
2 � 1)f1 > 0, where the magnitude of the two terms is comparable for tan� = 1.

We could therefore make the negative term dominate (also over the �2 term) by choosing

tan� su�ciently small. But this leads to trouble in eq. (36), where s 2��2(f
2
2 � 1)f2 < 0

and c 2��34(f
2
1 � 1)f2 > 0. And vice versa.

When we include the radiative corrections, however, there is a way out. We see this by

recognizing that �2 gets the largest contribution from radiative corrections. As a result,

the constant �2 is a positive, monotonically increasing function of t for realistic values

of t and tan�. Negative curvatures can be achieved for both f1 and f2 at large jxj by

choosing a low value of tan� that makes the negative term c 2��1(f
2
1 � 1)f1 dominate in

eq. (35), while choosing a large value of t so as to make the negative term s 2��2(f
2
2 �1)f2

dominate in eq. (36). Note that the low value of tan� also helps create a large value of

�2.

Our conclusion is therefore that necessary conditions for the existence of solutions of

the �eld equations are low values of �A and tan�, as well as a su�ciently high value of t

(i.e. MSUSY). At tree level, no solutions exist.

1The magnitude f is by de�nition non-negative. If it should ever reach zero, the phase � would

be unde�ned.
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IV. NUMERICAL SOLUTIONS

We have solved the �eld equations (13){(16) numerically by the method of relax-

ation [11] of the corresponding system of �nite di�erence equations, using a dynamically

adaptive grid in the independent variable y = MZx [12]. We have found this method

particularly reliable and worth the extra programming e�ort, as it does not attempt to

converge to false solutions in regions of parameter space where none exist. For conver-

gence the results of two successive iterations were required to di�er by less than 5 � 10�6

in each �eld. The functions were taken to satisfy the boundary conditions �(0) = �,

f
0

1 (0) = f
0

2 (0) = 0 and �(R) = 2�, f1(R) = f2(R) = 1, where R is a number chosen large

enough that the in
icted relative error in each boundary conditon is smaller than 10�5.

In eqs. (13), (14) the quantity �2 was replaced with w�2, and 1 + w(cos � � 1) was

substituted for cos �, where w takes values in [0; 1]. For w = 0 the system has the sine-

Gordon kink solution � = 4 tan�1[exp(�Ay)], f1 = f2 � 1, while for w = 1 it is the

true system for which a solution is sought. The solution was obtained by taking small

steps in the parameter w, using each previously obtained solution as a new initial guess.

In this method lies the assumption that any solution is continuously connected to the

sine-Gordon kink. Because the �eld � in both cases satis�es boundary conditions which

enforce the presence of a kink, such an assumption is most natural. In all the solutions

found, the �eld � indeed deviates very little from the sine-Gordon kink solution.
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FIGURES

FIG. 1. Region of parameter space (MA; tan�) where membrane solutions exist, for two

di�erent values of the supersymmetry-breaking mass MSUSY. Solutions exist below and to the

left of the curves.

Solutions were sought for parameters in the ranges 0 � �A � MA=MZ � 10, 0:1 <

tan� � 10, and 0 � t � ln(M 2
SUSY=M

2
t ) � 10. In agreement with the qualitative

discussion of the previous section, we found no solutions for t = 0 (tree level). For

realistic values of t, corresponding to values of MSUSY between 500 GeV and 5 TeV,

solutions were found for MA
<� 50 GeV and for tan� <� 0:5. The region of parameter

space (MA, tan�) where solutions exist is shown in Fig. 1. Fig. 2 depicts a typical

solution.
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FIG. 2. The membrane solution for MA = 50 GeV, tan� = 0:5 and MSUSY = 5 TeV.

We used Mt = 175 GeV, v = 246:2 GeV, MZ = 91:2 GeV, MW = 80:2 GeV, and

g2s =4� � �s = �s(Mt) = 0:107.

The solutions were unchanged as the number of grid points was doubled, and it was

veri�ed that they obey integral sum rules akin to the virial theorem. An independent

run with w �xed at 1, taking as initial guesses the true solutions for adjacent values

of (�A; tan �; t) rather than the sine-Gordon kink, gave the same region of existence of

solutions. This region is also quite insensitive to changes in the value of the top-quark

mass in the range 160 GeV�Mt � 190 GeV.
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V. CONCLUSIONS AND OUTLOOK

In this paper we have presented the results of a detailed investigation of non-

topological and CP-violating static wall solutions in the framework of the Minimal Su-

persymmetric Standard Model. We have shown that membranes, characterized by a

non-trivial winding of the relative U(1) phase of the two Higgs �elds in the direction

orthogonal to the wall, do not exist when the Higgs potential is computed at tree level,

but appear when quantum loop corrections to the Higgs potential are included.

Our results demonstrate that CP-violating membranes exist only for small values of

the mass of the CP-odd Higgs boson. This does not come as a surprise. Indeed, it was

shown on general grounds by Georgi and Pais [13] that gauge theories with perturbative

spontaneous symmetry breaking may exhibit CP violation solely by the structure of

quantum corrections to the tree-level potential. This may occur if and only if there

exist light pseudoscalars at the one-loop level. Even though the Georgi-Pais theorem

was proved only for spatially uniform CP-violating ground states, we conjecture that a

similar conclusion may be attained for CP-violating solitons whose existence is due to

quantum e�ects alone. In our case, the light pseudoscalar should be identi�ed with the

CP-odd Higgs boson.

We have presented our analysis in terms of the model parameters tan� and MA;

see Fig. 1. Let us now compare our results to the present experimental and theoretical

bounds in the (tan�;MA) plane.

The value of tan� may be theoretically bounded from below by invoking some ideas

from grand uni�ed scenarios. Indeed, if one assumes the perturbative validity of the

MSSM up to a scale of � 1016 GeV (the so-called \desert" hypothesis), the low-energy

value of the top Yukawa coupling ht no longer depends upon its `initial' value at high scale.

This is known as the quasi-infrared �xed-point solution and gives a theoretical prediction
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of the physical top-quark mass Mt that, when combined with the experimental bound

Mt = (175� 6) GeV, leads to the bound2 tan� > 1:4 . The most recent experimental

bound onMA has been given by the ALEPH Collaboration from the LEP run at 172 GeV

[14]. Combining results from the channel productions e+e� ! hA; hZ exclude a CP-odd

Higgs boson lighter than about 62.5 GeV for tan� > 1. Comparing these bounds with

the existence curves in Fig. 1, we may conclude that CP-violating membranes do not

exist in the allowed region of parameter space (MA; tan�).

Despite the fact that the existence of these objects is experimentally ruled out today,

we argue here that they may have existed and played a signi�cant role during the elec-

troweak phase transition.

The basic parameter which controls the existence of membranes is the squared mass

m 2
3 which multiplies the operator H1H2 in the Higgs potential (3). It is connected to

the physical CP-odd Higgs boson mass by the relation m 2
3 = M 2

A sin 2�=2. From our

results we may conclude that CP-violating membranes exist (for tan� > 1) only if m 2
3

is very small, in contradiction with experimental bounds. However, plasma corrections

coming from the thermal bath that constitutes the early Universe at temperature T may

drastically alter this conclusion. As a matter of fact, the zero-temperature parameter

m 2
3 receives a large temperature-dependent correction �m 2

3 (T ) from the interactions

of the Higgs �elds with stops, charginos and neutralinos, which populate the plasma

for temperatures larger than about 100 GeV [2]. As a consequence, it is the quantity

m 2
3 (T ) = m 2

3 +�m 2
3 (T ) that really controls the existence of membranes in the thermal

bath. Since �m 2
3 (T ) may be sizeble and negative [2], m 2

3 (T ) may be small and mem-

2This bound can be lowered slightly, to tan� > 1:1, in gauge-mediated SUSY-breaking models,

due to the presence of additional colored matter �elds at the intermediate scale M � 105� 107

GeV.
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branes may exist during the electroweak phase transition for zero-temperature values of

MA that are in agreement with present experimental bounds [15].

At temperatures above the critical phase-transition temperature, the thermal 
uc-

tuations may spontaneously and abundantly produce membrane-like con�gurations. A

naive estimate of the number density of membranes of size R produced at temperature

T due to thermal 
uctuations is n(R; T ) � T 3e�F=T , where F is the free energy of the

membrane of size R. An educated guess is F � �R2 where � is the energy per unit area.

The membranes have � � 2MA(T )v
2(T ), where M 2

A(T ) = m 2
3 (T ) sin 2�=2, and a typical

size R �M�1
A (T ) so that the associated free energy is given by F � 2v2(T )=MA(T ). The

thermal nucleation rate � at which they are formed is of the order of T e�F=T and is much

higher than the expansion rate of the Universe H � T 2=MP` (MP` = 1:2 � 1019 GeV

being the Planck mass) as long as F=T < ln(MP`=T ). To get a feel for the numbers: At

T � 100 GeV, F=T should be smaller than 40 or so.

Membranes are expected to be produced in great abundance by thermal 
uctuations.

They decay just as fast, however, since their lifetime � is determined by interactions with

the surrounding plasma: � � T�1.

At the electroweak phase transition, taking place at temperatures of the order of 100

GeV, the Standard Model gauge group SU(2)L
U(1)Y breaks and the scalar �elds acquire

vacuum expectation values h�1;2(T )i. The transition may occur via nucleation of critical

bubbles of radius Rc (�rst-order phase transition) or by an anomalous growth of initial

thermal 
uctuations in the unstable modes (second-order phase transition). Membranes

may still be thermally nucleated during this epoch, and their presence can a�ect the fate

of the baryon asymmetry produced in the transition itself if it is of the �rst order [16]. In

any scenario where the baryon asymmetry is generated during a �rst-order electroweak

phase transition, the asymmetry is produced in the vicinity of critical bubble walls, and

a strong constraint on the ratio between the vacuum expectation value of the Higgs �eld
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inside the bubble and the temperature must be imposed, h�(T )i=T > 1, where in our

case �(T ) =
q
� 2
1 (T ) + � 2

2 (T ) [16]. This bound is necessary for the just created baryon

asymmetry to survive the anomalous baryon-violating interactions inside the critical

bubble, and may be translated into a severe upper bound on the physical mass Mh of

the scalar Higgs particle. Combining this bound with the LEP constraint rules out the

possibility of electroweak baryogenesis in the Standard Model of electroweak interactions,

but leaves room for electroweak baryogenesis in the Minimal Supersymmetric extension

of the Standard Model [6,17].

Since the rate of anomalous baryon-number-violating processes scales like

exp(�h�i=T ), it is clear that even a small change in the vacuum expectation value of the

Higgs scalar �eld from its equilibrium value may be crucial for electroweak baryogenesis

considerations. Because Rc �M�1
A (T ), membranes may be thermally produced in large

numbers inside the critical bubbles and eventually decay. Since the vacuum expectation

value h�(T )i is reduced inside the membranes with respect to the value in the exterior of

the membranes (see Fig. 2), baryon-number-violating processes may be activated in the

membranes, causing a reduction of any preexisting baryon asymmetry. The spontaneous

violation of CP inside the membranes may also play a signi�cant role in this respect.

These and other considerations are now under investigation [15].
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